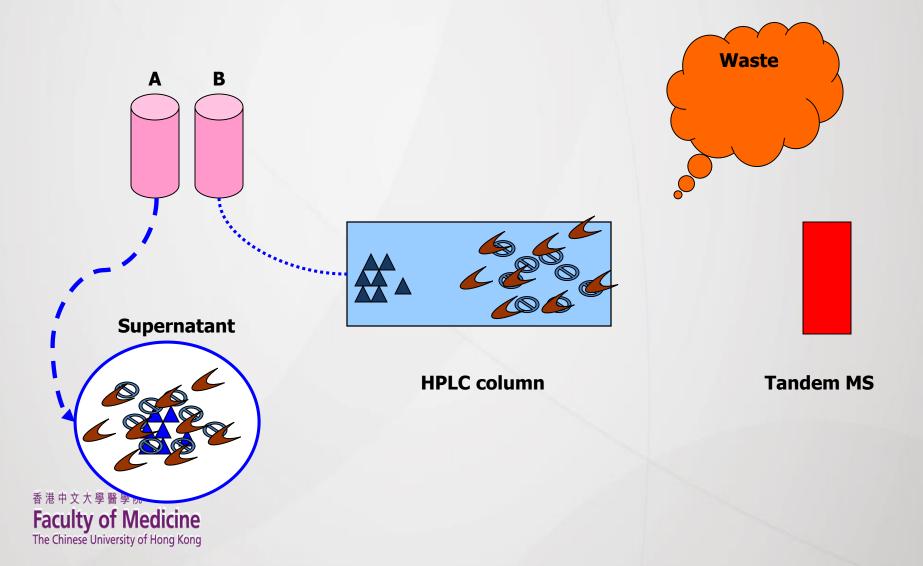


Retrospective Observational Studies for Biomarker Evaluation:

Experience with Routine service for Primary Aldosteronism by LC-MS/MS

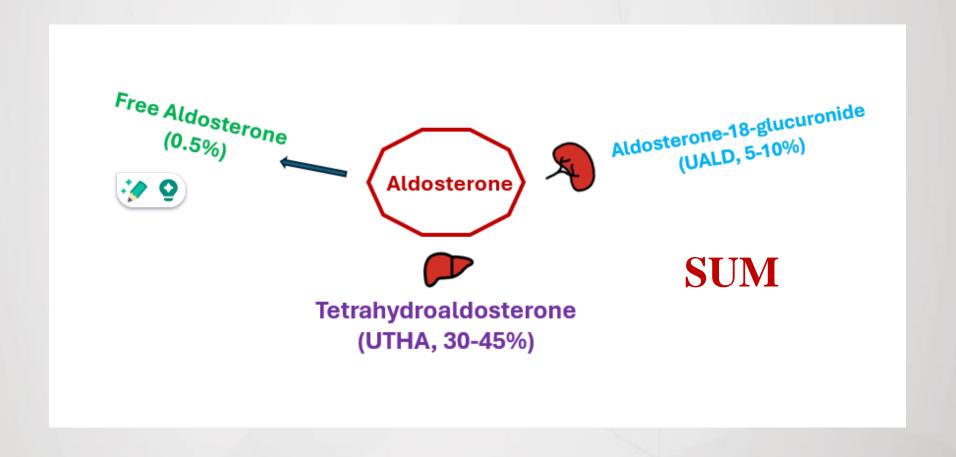
Ho Chung Shun
Department of Chemical Pathology
17 October 2025

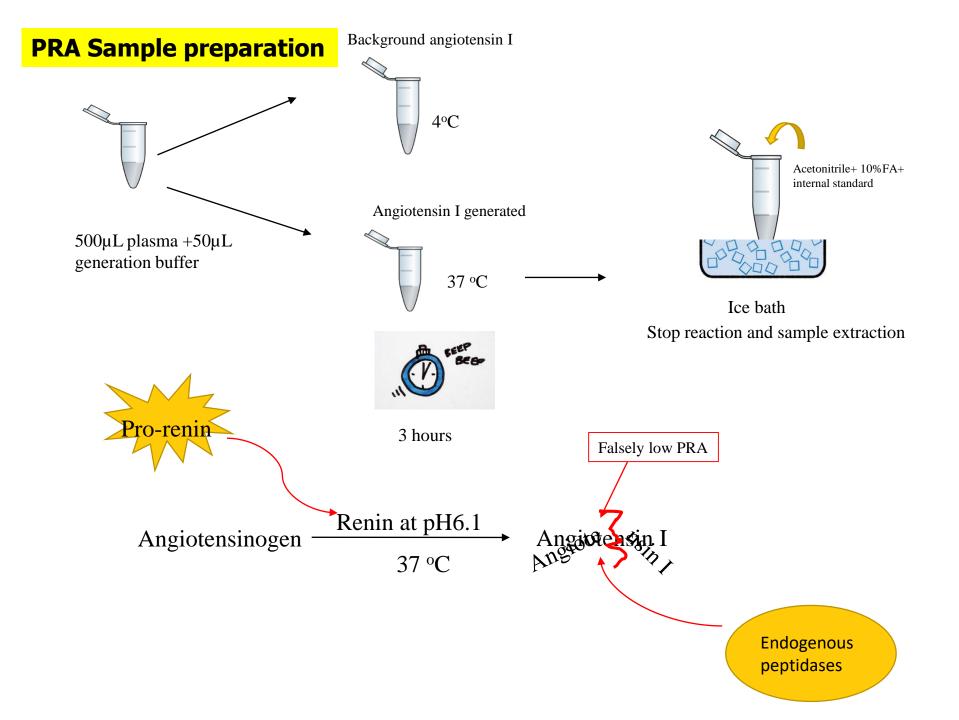
Biomedical Mass Spectrometry Unit (1995 -)


Prof. NM Hjelm

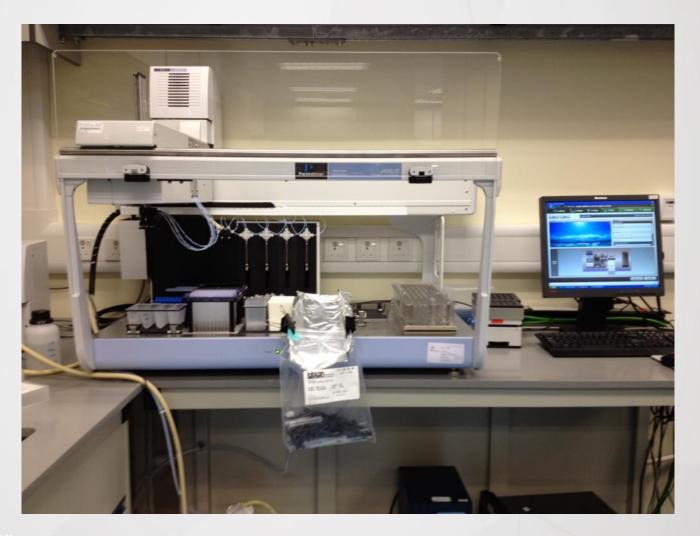
Micromass Quattro II 1995 - 2007

8 LC-MS/MS 3 LC-TOF


Liquid chromatography-tandem mass spectrometry (LC-MS/MS)



Biomedical Mass Spectrometry Unit (Historical events)

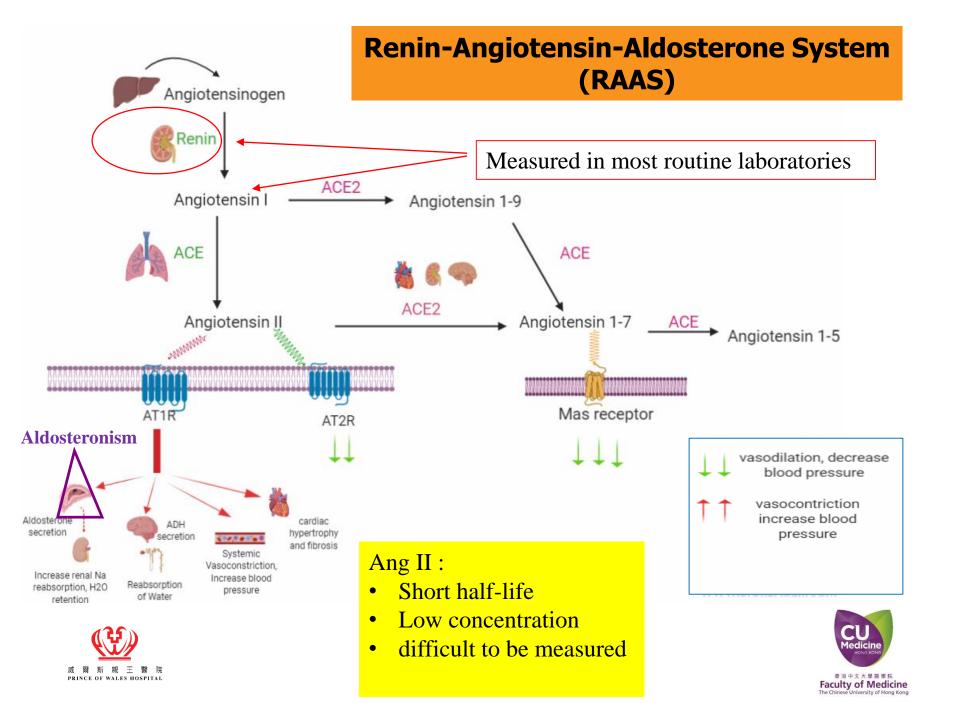

- First routine service 2003:
 - Blood Tacrolimus
- Second routine service 2004:
 - Serum 17OH-progesterone
- ...
- Closing down the RIA laboratory 2013:
 - Plasma renin activity (PRA) + aldosterone (PALD)
 - PALD/PRA ratio (ARR)
 - Urine aldosterone (UALD) + Tetrahydroaldosterone (UTHA)

Excretion of Aldosterone Metabolites

Semi-automated sample preparation

PALD, UALD & UTHA sample preparation

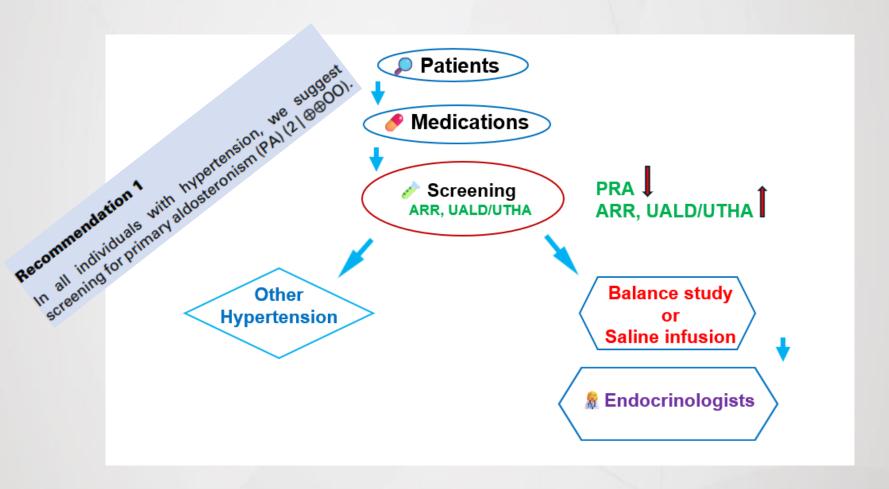
Procedures	PALD	UALD/ UTHA
Glucuronidase digestion		Υ
MBTE extraction & freeze at -80 C for an hour	Υ	Υ
Remove MBTE & reconstitute with 90% methanol	Υ	
Remove MBTE & reconstitute with 10% ACN		Υ
Hexane wash	Υ	
Remove methanol & reconstitute with 10% ACN	Υ	
Ready for LC-MS/MS analysis	Υ	Υ


香港中文大學醫學院 **Faculty of Medicine**The Chinese University of Hong Kong

Performance of different biomarkers

Indicators	PRA	PALD	UALD / UTHA
Electrospray ionization	Positive	Negative	Negative
Injection-to injection time (min)	12	9	9
Lower Limit of Quantitation	0.07 ng/mL-h (0.2 ng/mL Ang I)	50 pmol/L	0.5 nmol/L
Linearity	500 ng/mL Ang I	5160 pmol/L	2777 nmol/L
Between-batch precision (CV%)	<9.2	<5.0	<5.2

Carryover, matrix interference:
Not significant



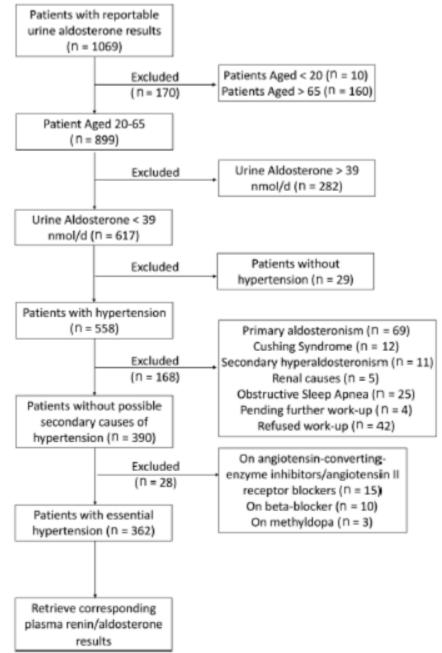
Aldosteronism

- Primary aldosteronism (PA)
 - High prevalence among hypertensive patients
 - Increased cardiovascular morbidity and mortality compared to essential hypertension
 - Treatable (adenoma by surgery, bilateral hyperplasia by medication)
- Secondary aldosteronism
 - Renal artery stenosis/renin-secreting tumor
 - Increase PRA and PALD

Routine workup for PA

Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline (JCEM 2025)

Evaluation of biomarkers by LC-MS/MS for Primary Aldosteronism workup


RETROSPECTIVE OBSERVATIONAL STUDIES

Reference intervals for biomarkers

- Recruiting reference subjects [239]
 - Apparently healthy adults (<60 years)
 - Not on hypertensive medications
 - Written consent signed
 - Questionnaire, blood pressure measurement, blood, 24 hr urine
- Reference subjects included [170]
 - Excluded 46 hypertensives (19.2%)
 - Excluded 4 with hypokalaemia
 - Excluded 19 due to past medical history
- A prospective study design

Hypertensive reference intervals

October 2013 - December 2020

From 1069 to 362

A retrospective observational study design

香港中文大學醫學院

Faculty of Medicine
The Chinese University of Hong Kong

Pros and Cons

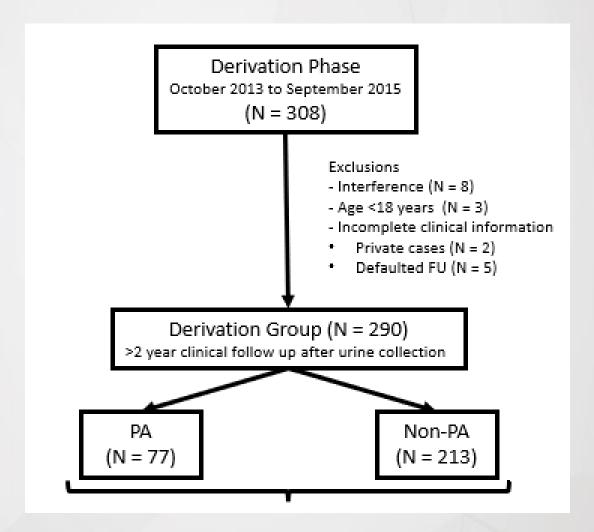
Aspects	Retrospective Observational	Prospective
Timeline	Fast (months; historical data)	Slow (years, forward data collection)
Cost	Low (historical data analysis)	High (recruitment, sample analyses, data analysis, etc)
Real-world reflection	High (routine practice, e.g. UTHA)	Moderate (controlled settings)
Bias risk	Higher (selection bias)	Lower (randomisation possible)
Evidence strength	Good for hypothesis (association)	Stronger for casualty

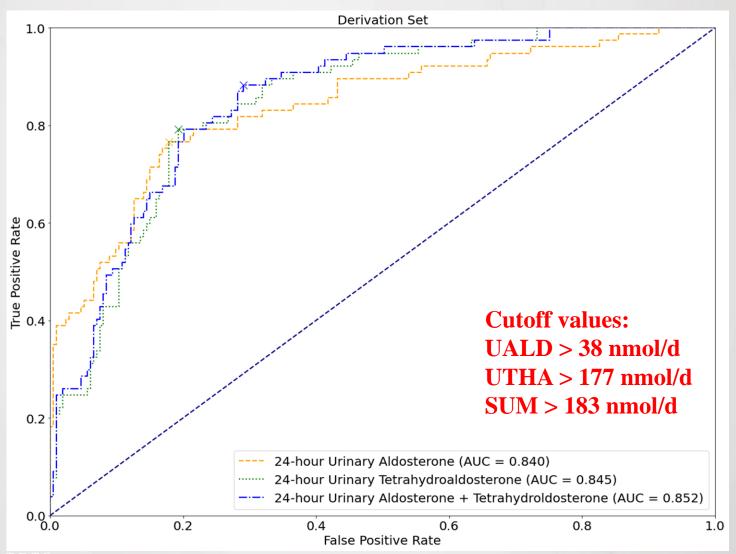
Jenny Yeuk-Ki Cheng*, Felix Chi-Kin Wong, Edith Wing-Kar Chow, Wendy Wan-Hang Lau, Kitty Kit-Ting Cheung, Timothy Hua-Tse Cheng, Teresa Kam-Chi Tsui, Alan Shek-Lun Chan, Clara Wai-Shan Lo and Chung-Shun Ho

Chinese normotensive and essential hypertensive reference intervals for plasma aldosterone and renin activity by liquid chromatography-tandem mass spectrometry

Integrating urine biomarkers with plasma ARR for PA screening

A RETROSPECTIVE OBSERVATIONAL STUDY


Objective


- Hypothesis: PA patients with autonomous secretion of aldosterone from the adrenal gland(s), and UALD & UTHA should also be increased.
- Endocrine Society clinical practice guidelines for PA: screening by plasma ARR.
- Retrospective observational study: evaluate the performance of urine biomarkers for PA screening and compare with plasma ARR

Study design

- Retrieved all UALD requests from October 2013 to September 2020
- Clinical records were reviewed
- A follow-up period of 2 to 7 years after UALD collection before establishing or excluding the diagnosis of PA
- The data were divided into two phases
 - Derivation phase (to establish optimal cutoff values)
 - Validation phase (to validate the established cutoff values and compare the performance with plasma ARR)

香港中文大學醫學院

Faculty of Medicine
The Chinese University of Hong Kong

811 patients with plasma ARR within 90 days of urine collection: 171 with PA and 640 with non-PA Validation Phase October 2015 to September 2020 (N = 1110)Exclusions - Interference (N = 8) - Age <18 years (N = 6)) - Incomplete clinical information Private cases (N = 35) Defaulted FU (N = 35) Validation Group (N = 1026) >2 year clinical follow up after urine collection PΑ Non-PA (N = 203)(N = 823)

	Derivation Phase (N	Validation Phase (N =	P-value
	= 290)	1026)	
Age (Years)	51 (20)	51 (23)	0.5132
Sex (Female; Male)	149; 141	479; 547	0.1579
Hypertension (N (%))	266 (92%)	966 (94%)	0.1355
Hypokalemia (N (%))	158 (54%)	498 (49%)	0.0739
Presence of adrenal nodule	89 (31%)	297 (29%)	0.5652
(N (%))			
Urine volume (L)	2.0 (1.1)	2.0 (1.1)	0.9805
Urinary sodium (mmol/L)	160 (110)	165 (106)	0.3598
Primary Aldosteronism (N	77 (27%)	203 (20%)	0.0130
(%))			

Biomarkers	Cutoff values (nmol/d)	Sensitivity (%)	Specificity (%)
UALD	>38	74	83
UTHA	>177	72	78
SUM	>183	84	71
ARR	>550	68	81
ARR or	>550 or		
suppressed PRA	<1	80	60

Biomarkers with false positives

Biomarkers	No. of false positive cases	% False positive
UALD	123	19
UTHA	148	23
SUM	199	31
ARR	119	19
ARR or PRA<1	254	40

ARR + Urine Biomarkers: Picked up 19% PA cases False Positive by 24%

How to integrate?

- SUM 199 false positive
 - ARR 52 true positives
 - SUM 147 false positive
 - PRA >3 67 cases (NOT PA)
 - SUM 57 false positive

Biomarkers with false negatives

- One case with incomplete sample collection + ARR false negative
- One case with borderline negative results + ARR false negative

Summary

- Integration of urine biomarkers with plasma ARR improves the screening of PA
- One 24 hr urine collection can be used for screening of 3 different secondary hypertensions: PA, Cushing syndrome, and phaeochromocytoma

Integrating 24-hour Urine Aldosterone and Tetrahydroaldosterone with Plasma Screening to Improve Detection of Primary Aldosteronism: A Seven-Year Retrospective Study

Timothy Hua-Tse Cheng¹, Jenny Yeuk Ki Cheng^{1,2}, Edith Wing Kar Chow^{3,6}, Wendy Wan Hang Lau³, Kitty Kit Ting Cheung³, Clara Wai Shan Lo^{1,2}, Teresa Kam Chi Tsui^{1,2}, Risa Ozaki³, Ronald Ching Wan Ma^{3,4,5,6}, Chung Shun Ho¹

- ¹Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong
- ²Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong
- ³Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- ⁴Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- ⁵Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- ⁶Phase 1 Clinical Trial Center, The Chinese University of Hong Kong, Hong Kong

The Balance Study to confirm and subtype Primary Aldosteronism

A RETROSPECTIVE OBSERVATIONAL STUDY

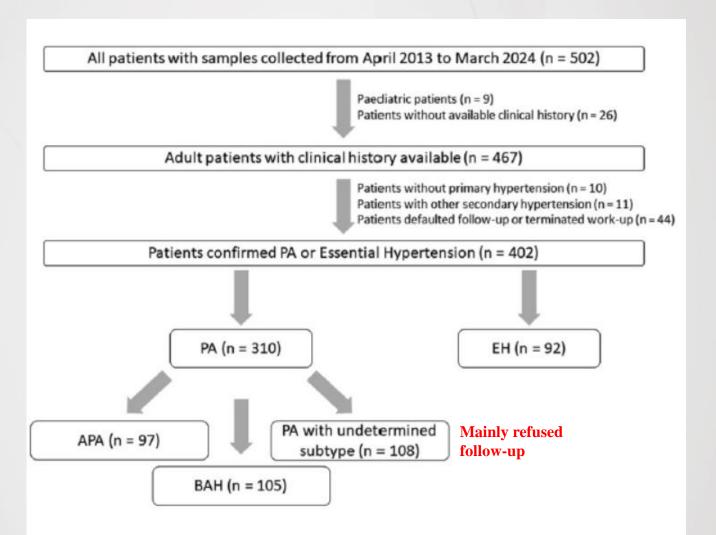
Balance Study

- To confirm and subtype PA
 - Oral salt loading to confirm
 - Postural stimulation to subtype
- Objectives
 - Evaluate the performance of different biomarkers
 - Establish cutoff values for routine service
- Retrospective observation
 - Patients with Balance study April 2013 March 2024

Balance Study Protocol

Pre-admission

- Sodium chloride tablets (5 days)
- Potassium supplement if needed


Admission

- Spot urine & blood check
- Collect 24 hr urine UALD

Posture Stimulation

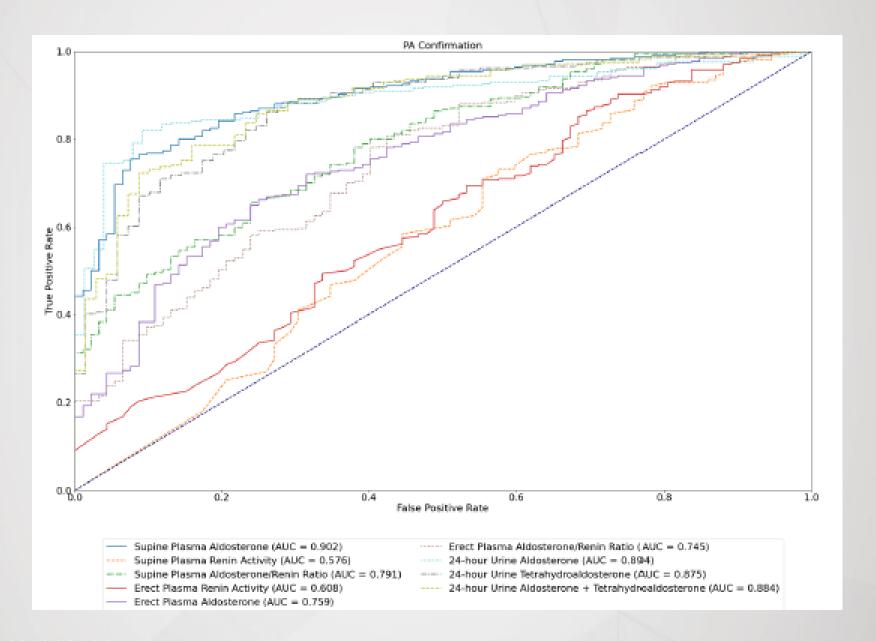
- 🌙 🛌 Supine position since midnight
- 🤦 9 a.m. 💉 Collect supine PRA & PALD
- 4 hours of ambulation
- Collect erect PRA & PALD

Figure 1: Flow diagram of data extraction. APA: aldosterone-producing adenoma; BAH: bilateral adrenal hyperplasia; EH: essential hypertension; PA: primary aldosteronism.

香港中文大學醫學院

Faculty of Medicine The Chinese University of Hong Kong

Table 1: Comparison of parameters measured in the balance study between patients with primary aldosteronism (PA) and essential hypertension (EH).


	PA (n=310)	EH (n=92)	p-Value
24-h salt-loaded urine			
Aldosterone, nmol/day	62 (57–66)	24 (21-26)	<0.001
Tetrahydroaldosterone, nmol/day	293 (272-320)	115 (101–132)	<0.001
Plasma: Supine			
Renin activity, ng/mL-h	0.17 (0.15-0.20)	0.23 (0.17-0.40)	0.026
Aldosterone, pmol/L	423 (400-456)	160 (143–175)	<0.001
Aldosterone-renin ratio, pmol/L/ng/mL-h	2,073 (1,828-2,553)	624 (438-843)	<0.001
Plasma: Erect			
Renin activity, ng/mL-h	0.40 (0.35-0.44)	0.61 (0.42-0.82)	0.002
Aldosterone, pmol/L	540 (497–574)	289 (247-338)	<0.001
Aldosterone-renin ratio, pmol/L/ng/mL-h	1,226 (1,049-1,538)	439 (305-608)	<0.001

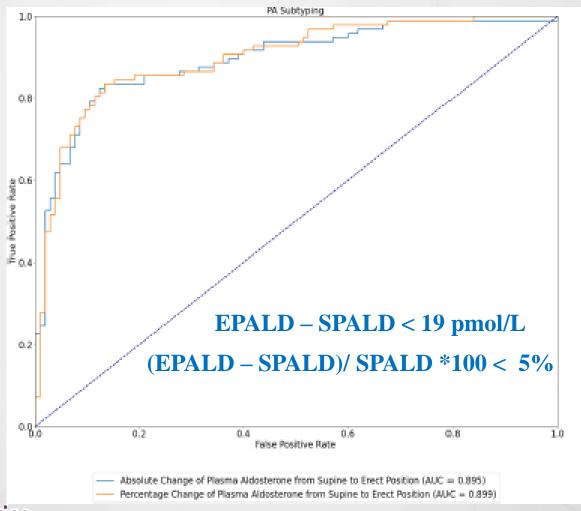
p-Value <0.05 are bolded. Numerical results are expressed in median (95 % confidence interval).

Table 2: Comparison of parameters measured in the balance study between patients with unilateral aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH).

	APA (n=97)	BAH (n=105)	p-Value
24-h salt-loaded urine			
Aldosterone, nmol/day	75 (61–81)	57 (50–64)	0.016
Tetrahydroaldosterone, nmol/day	329 (281-360)	267 (237-296)	0.009
Plasma: Supine			
Renin activity, ng/mL-h	0.13 (0.10-0.17)	0.26 (0.17-0.39)	<0.001
Aldosterone, pmol/L	605 (546-689)	343 (276-392)	<0.001
Aldosterone-renin ratio, pmol/L/ng/mL-h	4,448 (2,769-6,713)	1,107 (871-1,872)	<0.001
Plasma: Erect			
Renin activity, ng/mL-h	0.28 (0.22-0.38)	0.75 (0.50-0.99)	<0.001
Aldosterone, pmol/L	373 (306-467)	595 (542-665)	<0.001
Aldosterone-renin ratio, pmol/L/ng/mL-h	1,359 (902-1,888)	829 (613-1,201)	0.015

p-Value <0.05 are bolded. Numerical results are expressed in median (95 % confidence interval).

Faculty of Medicine The Chinese University of Hong Kong


Performance of Biomarkers to confirm PA by ROC analyses

Biomarkers	AUC	Sensitivity	Specificity
Supine PALD (>273 pmol/L)	0.902	76	92
UALD (>38 nmol/d)	0.894	82	91
UTHA (>160 nmol/d)	0.875	86	74
SUM (>259 nmol/d)	0.884	72	91

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

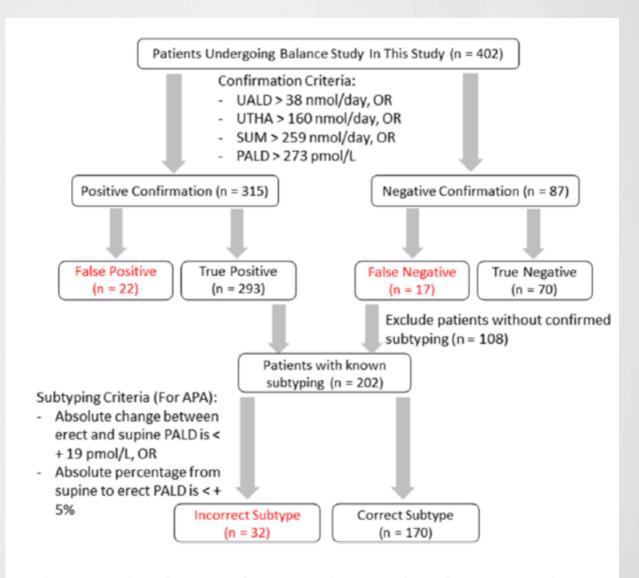
Overall: 94% SN, 76% SP

Performance of Biomarkers to subtype PA by ROC analyses

Faculty of Medicine
The Chinese University of Hong Kong

香港中文大學醫學院

Table 3: Performance of postural stimulation test in different studies.


Study	Number of samples	Methodology for PALD	Time for supine and erect PALD	AUC	Cut-off of erect/supine PALD	Sensitivity	Specificity
Fontes et al. [25]	89 APA and 57 BAH	RIA	Supine: morning Erect: 2–4 h after ambulation	/	<30 % increase	85.4%	80.7 %
Fuss et al. [20]	55 APA and 29 BAH	RIA; CLIA	Supine: 8–9 am Erect: 4 h after ambulation	0.724	>28 % decrease	36.4 %	100 %
Wu et al. [19]	314 APA and 217 BAH	CLIA	Supine: 5 am Erect: 2 h after ambulation	0.604	<30 % increase	73.8 %	46.2 %
Current study	108 APA and 105 BAH	LC-MS/MS	Supine: 9 am Erect: 4 h after ambulation	0.90	<5 % increase	84 %	87 %

AUC, area under the curve; CLIA, chemiluminescence immunoassay; LC-MS/MS, liquid chromatography-tangelianass spectrometry; PALD, plasma aldosterone; RIA, radioimmunoassay.

Sturial Sturial

香港中文大學醫學院

Faculty of Medicine
The Chinese University of Hong Kong

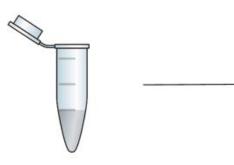
Figure 3: Flow diagram of patients' diagnosis based on proposed cutoffs.

Summary

- The Balance Study can help PA confirmation and provide direction on PA subtyping in a non-invasive manner
- UTHA and supine PALD could complement UALD for PA confirmation
- Erect/supine PALD ratio could assist in PA subtyping in cases with equivocal AVS results or in regions where AVS is not readily available

Jenny Yeuk Ki Cheng*, Wai Shan Clara Lo, Teresa Kam Chi Tsui, Wing Kar Edith Chow, Kitty Kit Ting Cheung, Ronald Ching Wan Ma, Risa Ozaki and Chung Shun Ho

Oral salt loading combined with postural stimulation tests for confirming and subtyping primary aldosteronism



Aldosterone/ Angiotensin II Ratio (AAIIR)

A RETROSPECTIVE COHORT STUDY

Dr. Clara Lo PhD project

LCMS method for plasma Ang II measurements

Sample preparation time for 40 samples : 1 hour

Injection time: 6.5min

300uL plasma+30μL IS+100 μL 4% FA

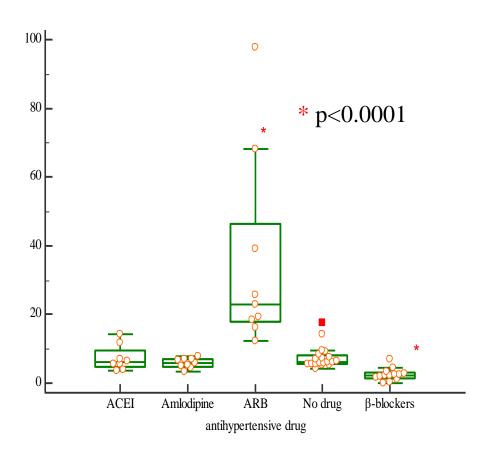
Sample added to MAX µElution plate

Between batch CV < 7%

LOQ: 3.3 pmol/L

Linearity range: 3.3-700 pmol/L

Not interfered by other angiotensin peptides



Extracted samples were measured by LCMS

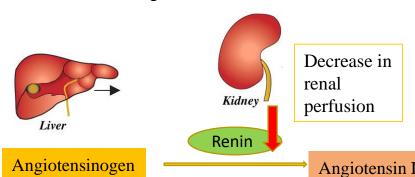
Sample was extracted by off-line SPE with Waters positive pressure processor

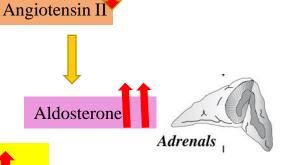
Ang II levels in patients taking different anti-hypertensive drugs

Compared with untreated hypertensive patients:

ARB-significantly higher Beta-blocker- significantly lower

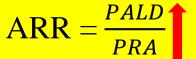
DOI: 10.1002/bmc.5318


RESEARCH ARTICLE


Quantitation of plasma angiotensin II in healthy Chinese subjects by a validated liquid chromatography tandem mass spectrometry method

Clara Wai-Shan Lo¹ | Teresa Kam-Chi Tsui¹ | Ronald Ching-Wan Ma^{2,3} | Michael Ho-Ming Chan¹ | Chung-Shun Ho¹

Primary Aldosteronism (PA)



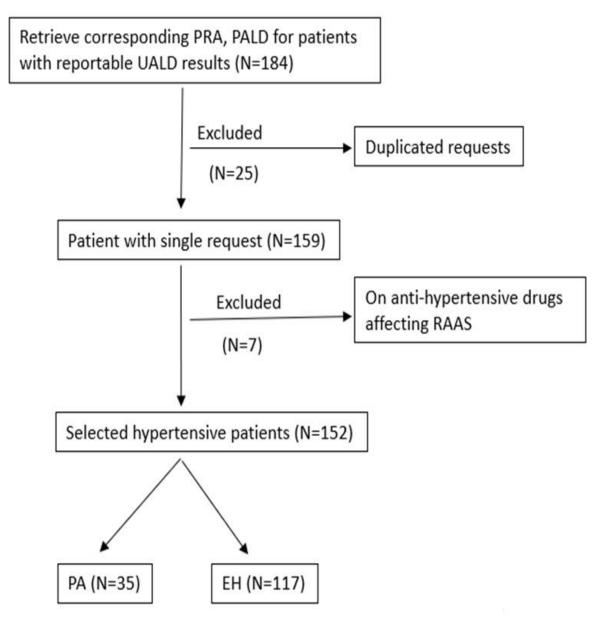
Laboratory test results

Plasma aldosterone (PALD) Plasma renin activity(PRA)

Laboratory test results

Plasma aldosterone (PALD)

Plasma angiotensin II (Ang II)

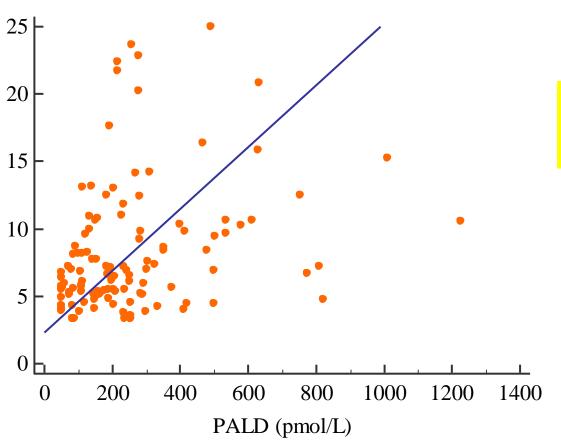


$$AAIIR = \frac{PALD}{AngII}$$

Ang II- active mediator
?? Better screening marker than ARR for PA

香港中文大學醫學院

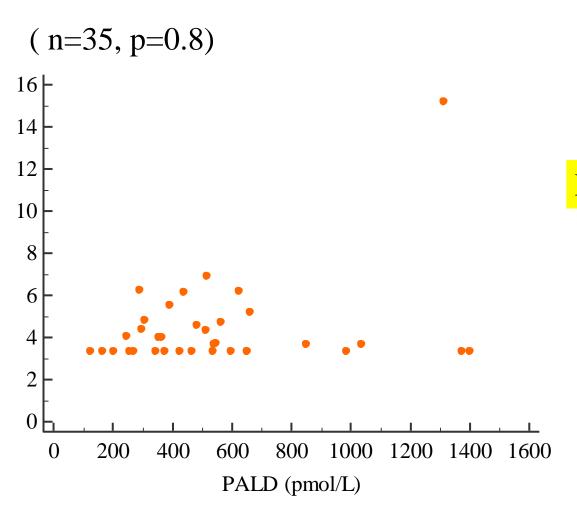
Faculty of Medicine The Chinese University of Hong Kong


Characteristics of the selected patients

	Patient's group		
	Non-PA (n = 120)	PA (n = 35)	Р
Female	62	21	
Male	58	14	
Age	45.3±11.7	53.9 ± 9.6	<0.0001
24hr urine aldosterone			
(nmol/day)	29.2 ± 4.3	63.0 ± 7.6	<0.0001
24hr urine sodium			
(mmol/day)	162 ± 14.7	173 ± 21.5	0.3774
PRA (ng/mL-hour)	1.13 ± 0.22	0.39 ± 0.19	<0.0001
PALD (pmol/L)	198± 24.6	468 ± 83.4	<0.0001
Ang II (pmol/L)	7.6 ± 0.2	5.0 ± 0.74	<0.0001
ARR	180 ± 45	1613 ± 541	<0.0001
AAIIR	27.2 ± 3.39	112.8 ± 20.75	<0.0001

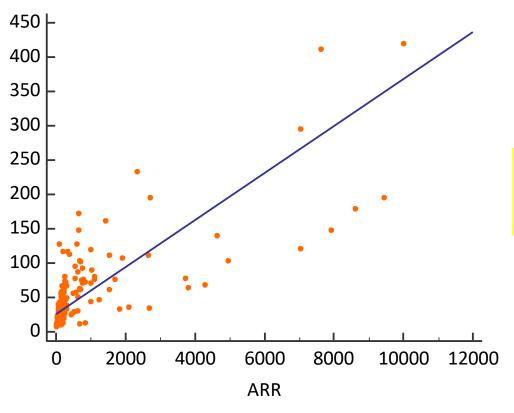
Correlation of AngII and PALD in Non-PA patients

(n=120, p=0.0004, r=0.32)



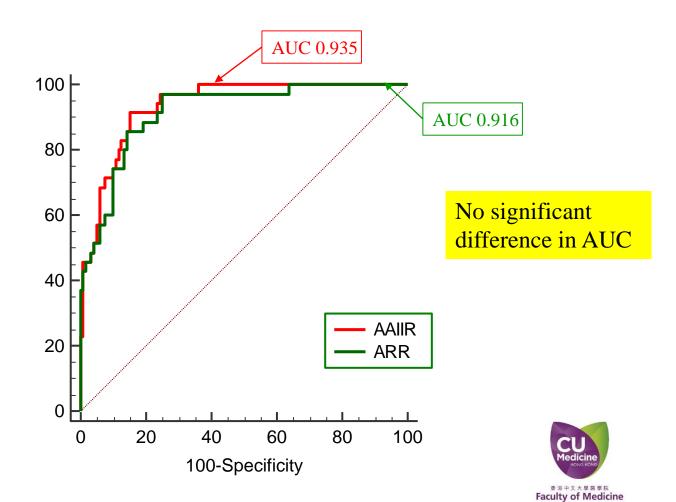
Significantly correlated

Correlation of Ang II and PALD in PA patients


NOT correlated

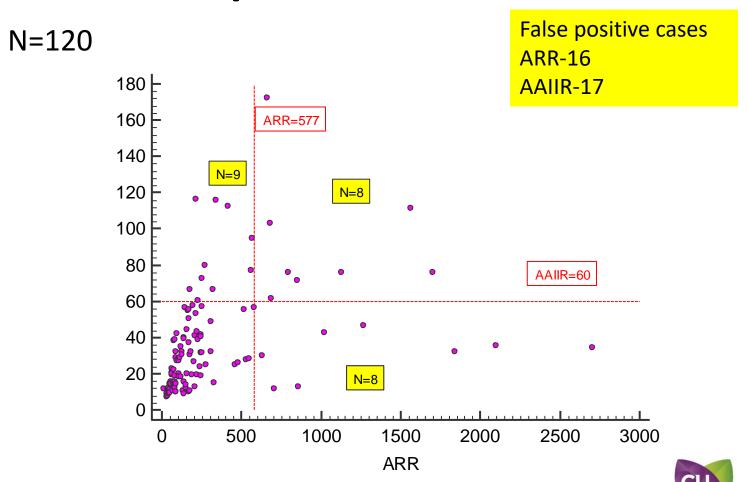
Correlation of AAIIR and ARR in patients

(n=155, p<0.0001, r=0.78)



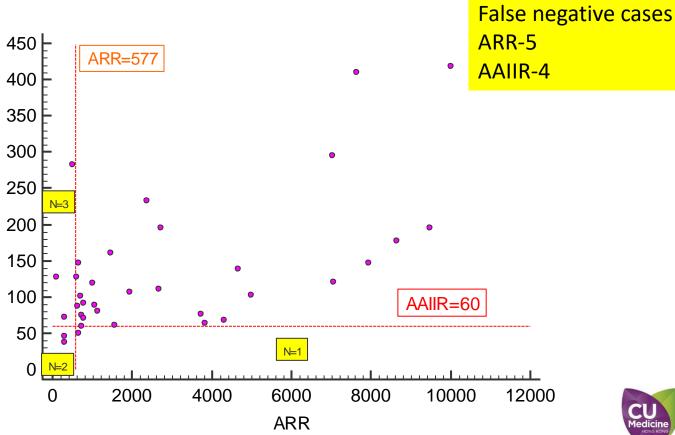
Significantly correlated

Comparison of the ROC curves of AAIIR and ARR for patients(n=155)


ROC curve analysis (2)

	AAIIR	ARR
Sensitivity (%)	91	86
Specificity (%)	85	87
Area under ROC curve AUC	0.935	0.916
Cut Off	>60	>577
Likelihood ratio(positive)	6	6
Likelihood ratio(negative)	0.1	0.2

Concordance of AAIIR and ARR for non-PA patients



Faculty of Medicine

Concordance of AAIIR and ARR for PA patients

N = 35

Advantages of using AAIIR

	ARR	AAIIR
Analysis time (40	22 hours	10 hours
samples)		
Affected by	Yes	No
endogenous		
proteases		
Specificity	Indirect	Active mediator of RAS
	measurement on	
	RAS	

Clara Wai-Shan Lo*, Jenny Yeuk-Ki Cheng, Teresa Kam-Chi Tsui, Ronald Ching-Wan Ma, Michael Ho-Ming Chan, Risa Ozaki and Chung-Shun Ho

Screening primary aldosteronism by plasma aldosterone-to-angiotensin II ratio

https://doi.org/10.1515/cclm-2024-1312 Received November 10, 2024; accepted March 23, 2025; published online April 7, 2025 **Keywords:** primary aldosteronism screening; aldosterone-to-angiotensin II ratio; diagnostic performance

Future direction for the PA routine service

RETROSPECTIVE OBSERVATIONAL STUDY

- Reporting of the urine biomarkers for the screening and the Balance study
- An improved LC-MS/MS method for the simultaneous quantification of PRA and plasma Ang II
- Obstacles to overcome: EQA programs for these new biomarkers

Acknowledgments

- Dr. Clara Lo
- Mr. Eddy Luk
- MR. Alan Chan
- Dr. Teresa Tsui
- Dr. Jenny Cheng
- Dr. Timothy Cheng
- Dr. Michael Chan

- Professor Ronald Ma
- Dr. Edith Chow
- Dr. Kitty Cheung
- Dr. Wendy Lau
- Dr. Risa Osaki